Entropy driven chain effects on ligation chemistry.
نویسندگان
چکیده
We report the investigation of fundamental entropic chain effects that enable the tuning of modular ligation chemistry - for example dynamic Diels-Alder (DA) reactions in materials applications - not only classically via the chemistry of the applied reaction sites, but also via the physical and steric properties of the molecules that are being joined. Having a substantial impact on the reaction equilibrium of the reversible ligation chemistry, these effects are important when transferring reactions from small molecule studies to larger or other entropically very dissimilar systems. The effects on the DA equilibrium and thus the temperature dependent degree of debonding (%debond) of different cyclopentadienyl (di-)functional poly(meth-)acrylate backbones (poly(methyl methacrylate), poly(iso-butyl methacrylate), poly(tert-butyl methacrylate), poly(iso-butyl acrylate), poly(n-butyl acrylate), poly(tert-butyl acrylate), poly(methyl acrylate) and poly(isobornyl acrylate)), linked via a difunctional cyanodithioester (CDTE) were examined via high temperature (HT) NMR spectroscopy as well as temperature dependent (TD) SEC measurements. A significant impact of not only chain mass and length with a difference in the degree of debonding of up to 30% for different lengths of macromonomers of the same polymer type but - remarkably - as well the chain stiffness with a difference in bonding degrees of nearly 20% for isomeric poly(butyl acrylates) is found. The results were predicted, reproduced and interpreted via quantum chemical calculations, leading to a better understanding of the underlying entropic principles.
منابع مشابه
Chemical synthesis of circular proteins.
Circular proteins, once thought to be rare, are now commonly found in plants. Their chemical synthesis, once thought to be difficult, is now readily achievable. The enabling methodology is largely due to the advances in entropic chemical ligation to overcome the entropy barrier in coupling the N- and C-terminal ends of large peptide segments for either intermolecular ligation or intramolecular ...
متن کاملEntropy driven chain effects on ligation chemistry† †Electronic supplementary information (ESI) available: Synthetic details, applied MHKS parameters, SEC chromatograms of all samples, (HT) NMR data, experimental debonding values, SANS measurements, computational data (energy contributions and geometries in the form of Gaussian archive entries). See DOI: 10.1039/c4sc02908a Click here for additional data file.
Preparative Macromolecular Chemistry, Polymerchemie, Karlsruhe Institute of Te Karlsruhe, Germany. E-mail: christopher.ba Institut für Biologische Grenzächen, Ka Hermann-von-Helmholtz-Platz 1, 76344 Egg Leibniz-Institut für Polymerforschung Dre Germany. E-mail: [email protected] Technische Universität Dresden, 01062 Dre ARC Centre of Excellence for Electromateria Australian National University,...
متن کاملRefolding of Lysozyme Upon Interaction with ?-Cyclodextrin
Effects of ?-cyclodextrin, ?CD, on refolding of lysozyme was investigated at pH 12 employing isothermal titration calorimetry (ITC) at 300K in 30mM Tris buffer solution. ?CD was employed as an anti-aggregation agent and the heats obtained for lysozyme+?CD interactions are reported and analyzed in terms of the extended solvation model. It was indicated that there are two sets of identical and no...
متن کاملIntroduction of a tailor made anion receptor into the side chain of small peptides allows fine-tuning the thermodynamic signature of peptide-DNA binding.
The binding between peptides and DNA is often driven by entropic forces. We demonstrate herein a new approach to shift the thermodynamic profile of peptide/DNA binding from entropy to enthalpy driven. This eventually leads to higher compacted DNA aggregates which are important for gene transfection.
متن کاملIrreversibility Analysis of MHD Buoyancy-Driven Variable Viscosity Liquid Film along an Inclined Heated Plate Convective Cooling
Analysis of intrinsic irreversibility and heat transfer in a buoyancy-driven changeable viscosity liquid along an incline heated wall with convective cooling taking into consideration the heated isothermal and isoflux wall is investigated. By Newton’s law of cooling, we assumed the free surface exchange heat with environment and fluid viscosity is exponentially dependent on temperature. Appropr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical science
دوره 6 2 شماره
صفحات -
تاریخ انتشار 2015